
Event-Driven Architecture
and Serverless with Red Hat

1

“Serverless,” Defined
Serverless computing is a cloud computing execution model in
which the applications are written by the cloud consumer and the
infrastructure is managed by the cloud provider.

“Serverless,” Defined
Serverless computing is…

● a cloud computing execution model
● where the applications are written by the cloud consumer
● and infrastructure is managed by the cloud provider

“Serverless,” Defined
Serverless computing is…

● a cloud computing execution model
● where the applications are written by the cloud consumer
● and infrastructure is managed by the cloud provider

“Infrastructure”: from hardware all the way up the stack to the
number of instances of applications running

Serverless, Defined
● execution model
● applications are written by the cloud consumer
● infrastructure is managed by the cloud provider.

Serverless vs FaaS
Functions as a Service (FaaS): small pieces of code that you trust
someone else to run for you. In general, architecture options are
limited to what they run and how they run it.

Serverless isn’t the same as FaaS - but FaaS systems do generally
use the Serverless execution model to manage how they run.

Serverless uses the power of containers and automation to minimize
the thought and work needed to run applications.

Okay, but why?
“Running containers is pretty easy!”
or
“Just getting to containers and OpenShift is so huge for us,
let’s look at that first!”

Why do I need to understand this new thing?

Weaknesses of Traditional
Architecture

8

Weakness 1: Tight Coupling

When one thing changes, everything changes.

10

Tight Coupling

11

Tight Coupling (Cascading Change)

Weakness 2: Baton Dropping

When something breaks, everything breaks.

13

Baton Dropping

14

Baton Dropping (Cascading Failure)

Weakness 3: Call Chain Latency
➔ Every call in the chain takes time to execute the

code.
➔ Every hop between calls takes network time.
➔ Jumping between data centers and clouds add

MORE time/latency.

Call Chain Latency

16

Weakness 4: Sizing and Managing Scale
How many instances of the running application should we have?
1? 2? 5?

It’s expensive to guess too many (because of wasted
infrastructure!) and even more expensive to guess too few -
because customers expect responsiveness.

Recap: Traditional Architecture Weaknesses
1. Tight coupling

2. Cascading failures
3. Call chain latency
4. Scaling

Effects of Microservices and Clouds
1. Longer call chains

2. More network latency
3. Splitting call chains
4. Scaling is even harder - so many services!

Architecture Problems

Tight coupling
Cascading failures
Call chain latency
Cloud latency
Getting scaling right

A Solution Appears!
Asynchronous Processing +
Event-Driven Architecture

21

A Human Analogy
○ Visiting the Secretary of State
○ Filling out a form online

Request-Reply vs. Event-Driven

Synchronous
Ephemeral
Low composability
Simplified model
Low tolerance to failure
Best practices evolved as REST

Asynchronous
Optionally Persistent
Highly composable
Complex model
High tolerance to failure
Best practices still evolving
Decoupled23

Asynchronous Processing Notes
1. Asynchronous processing

2. Messages
3. Think of the secretary of state - waiting
4. “Avoid the wait” - just like emailing or filling out a form
5. Messaging technology has existed a long time, and is now very mature
6. Kafka
7. Nearly Everything can be asynchronous
8. Serverless can be workload-aware, and scale up/down based on the

amount of incoming messages

All About Events
“Event” - an action or occurrence that happened in the
past as a result of something (usually an end user, could
also be another system) interacting with a system. Like...

○ order created
○ new account opened
○ claim created

All About Events
Characteristics of an “event:”

○ Immutable
○ Can be persisted
○ Shareable

All About Events
Event types:

○ Notification
○ State Transfer (Command)
○ Event-Sourcing/CQRS

https://martinfowler.com/articles/201701-event-driven.html

APAC

A Change in Thinking

EventsMicroservices Lines of
Business

Apps

Regions

System-centric, and data-centric

Events are ephemeral, intended to
make systems work, while systems
own their own systems of record

Event-centric

Events are long-lived or permanent;
designed to serve as a first-class

enterprise information store

Events

Events

Events
Microservices

Apps
LOBs

Regions

APAC

A Change in Thinking: Event-Centric

EventsMicroservices Lines of
Business

Apps

Regions

Event-centric

Advantages of this approach:

● Services can be simpler & stateless

● Communication patterns are clearer
and easier to follow

● Data silos can be decreased while
keeping ownership clear

Event-Driven Microservices: A Model

Applications

Messaging
Middleware

30

]
]

TRADITIONAL MESSAGING

Advantages
● Store-and-forward
● individual message exchanges

(transactionality, acknowledgment,
error handling/DLQs),
P2P/competing consumer support

● Publish-subscribe support with
limitations

Trade-offs
● No replay support
● Requires fast and/or highly

available storage infrastructure
● No ordering at scale

EVENT STREAMING

Advantages
● long-term persistence, replay,

semantic partitioning, large
publisher/subscriber imbalances,
replay and late-coming subscribers

● Shared nothing data storage model
● Repeatable ordering at scale

Trade-offs
● Weak support for individual

message acknowledgment,
p2p/competing consumers

● Larger data footprint and extremely
fast storage access

V
S

Architecture Problems Architecture Solutions

Tight coupling
Cascading failures
Call chain latency
Cloud latency
Getting scaling right

Architecture Problems Architecture Solutions

Tight coupling Event-Driven messages
Cascading failures
Call chain latency
Cloud latency
Getting scaling right

Architecture Problems Architecture Solutions

Tight coupling Event-Driven messages
Cascading failures Event-Driven messages
Call chain latency
Cloud latency
Getting scaling right

Architecture Problems Architecture Solutions

Tight coupling Event-Driven messages
Cascading failures Event-Driven messages
Call chain latency Event-Driven messages
Cloud latency
Getting scaling right

Architecture Problems Architecture Solutions

Tight coupling Event-Driven messages
Cascading failures Event-Driven messages
Call chain latency Event-Driven messages
Cloud latency Event-Driven messages
Getting scaling right

Architecture Problems Architecture Solutions

Tight coupling Event-Driven messages
Cascading failures Event-Driven messages
Call chain latency Event-Driven messages
Cloud latency Event-Driven messages
Getting scaling right ???

Serverless Architecture:
Automatic Scaling for
Event-Driven Architecture

38

Serverless Operational Benefits

39

OPENSHIFT SERVERLESS

With Serverless

Over provisioning
Time in capacity planning
IT cost of idle resources

Under provisioning
Lost business revenue
Poor quality of service

More applications
Direct line between IT
costs & business revenue

NOT Serverless with Serverless

OPENSHIFT SERVERLESS

The "Serverless Pattern"

Event Your
Application

Results

HTTP Requests

Kafka Messages

Image Uploaded

New Order

Login from user

trigger produce

OPENSHIFT SERVERLESS

The "Serverless Pattern"

Processing a Kafka message

Container

Container

Storage

Kafka Message

Kafka Messages

External System

External System

OPENSHIFT SERVERLESS

The "Serverless Pattern"

A serverless web application

Container

HTTP Request

Container

HTTP Requests

Database

Browser

Browser

myapp.example.com

OPENSHIFT SERVERLESS

The "Serverless Pattern"

A serverless web application

Container

HTTP Request

Container

HTTP Requests

Database

Browser

Browser

myapp.example.com

Benefits of this model:

● No need to setup auto-scaling and load balancers

○ Scale down and save resources when needed.

○ Scale up to meet the demand.

● No tickets to configure SSL for applications

● Enable Event Driven Architectures (EDA) patterns

● Enable teams to associate cost with IT

● Modernize existing applications to run as serverless containers

Event-Based Serverless Architecture: A Model

● Elastic execution and
avoidance of idling with
autoscaling

● Utility data and messaging
infrastructure, provided via
platform services

● Decoupling of business logic
from messaging infrastructure

Architecture Problems Architecture Solutions

Tight coupling Event-Driven messages
Cascading failures Event-Driven messages
Call chain latency Event-Driven messages
Cloud latency Event-Driven messages
Getting scaling right Serverless

OpenShift Serverless

46

OPENSHIFT SERVERLESS

47

AWS Lambda, Functions...

Built around the FaaS components
and other services such as API
Gateways. It enabled a variety of use
cases but it is far from ideal for general
computing and with room for
improvements.

1.0

➔ HTTP and other few Sources
➔ Functions only
➔ Limited execution time (5 min)
➔ No orchestration
➔ Limited local development experience

Serverless Containers

With the advent of Kubernetes, many
frameworks and solutions started to
auto-scale containers. Cloud providers
created offerings using managed
services completely abstracting
Kubernetes APIs.

1.5

➔ Red Hat joins Knative
➔ Kubernetes based auto-scaling
➔ Microservices and Functions
➔ Easy to debug & test locally
➔ Polyglot & Portable

Integration & State

The maturity and benefits of
Serverless are recognized industry
wide and it adds the missing parts to
make pattern suitable for general
purpose workloads and used on the
enterprise.

2.0

➔ Basic state handling
➔ Enterprise Integration Patterns
➔ Advanced Messaging Capabilities
➔ Blended with your PaaS
➔ Enterprise-ready event sources

Serverless is still evolving...

Serverless Market Trends

48
Source:
1. https://www.oreilly.com/radar/oreilly-serverless-survey-2019-concerns-what-works-and-what-to-expect/
2. Forrester - Now Tech: Serverless, Q4 2019

40%
of enterprises adopted

Serverless technologies or
practices with expected

growth coming in the next 12
to 18 months.¹

"Use Serverless To optimize The Benefits of The cloud" 2

60%
of the serverless practitioners

reported "reduction of
operational costs” with the

second biggest benefit being
"scale with demand

automatically"

Vendor lock-in is the second
biggest concern when
adopting Serverless

technologies.¹

https://www.oreilly.com/radar/oreilly-serverless-survey-2019-concerns-what-works-and-what-to-expect/
https://www.forrester.com/report/Now+Tech+Serverless+Q4+2019/-/E-RES155935?objectid=res155935

Application Architecture Choices

Serverless

Event-Driven
Architecture

50

Istio Knative

Common Deployment Tools

Developer Productivity

Cluster Services
Automated Ops ⠇Over-The-Air Updates ⠇Monitoring ⠇Telemetry ⠇Logging ⠇Registry ⠇Networking ⠇Router

51

Red Hat Enterprise Linux & RHEL CoreOS

Kubernetes

Helm ⠇Developer CLI ⠇VS Code
extensions ⠇IDE Plugins
Code Ready Workspaces
CodeReady Containers

Service Mesh ⠇Serverless
Builds ⠇CI/CD Pipelines

Full Stack Logging
Chargeback

Databases ⠇Languages
Runtimes ⠇Integration
Business Automation

150+ ISV Services

Platform Services Application Services Developer Services

OpenShift Container Platform

Physical Virtual Private cloud Public cloud

Operate
Kubernetes

Build Cloud-Native AppsManage Workloads

Multi-cluster Management
Discovery ⠇Policy ⠇Compliance ⠇Configuration ⠇Workloads

Multi-cluster Management
Discovery ⠇Policy ⠇Compliance ⠇Configuration ⠇Workloads

Developer Productivity

Cluster Services
Automated Ops ⠇Over-The-Air Updates ⠇Monitoring ⠇Logging ⠇Registry ⠇Networking ⠇Router

52

Red Hat Enterprise Linux & RHEL CoreOS

Kubernetes

Helm ⠇Developer CLI ⠇VS Code
extensions ⠇IDE Plugins
Code Ready Workspaces
CodeReady Containers

Service Mesh ⠇Serverless
Builds ⠇CI/CD Pipelines

Full Stack Logging
Chargeback

Databases ⠇Languages
Runtimes ⠇Integration
Business Automation

150+ ISV Services

Platform Services Application Services Developer Services

OpenShift Container Platform

Physical Virtual Private cloud Public cloud

Operate
Kubernetes

Build Cloud-Native AppsManage Workloads

53

Event-driven, serverless containers and functions

➤ Deploy and run serverless containers

➤ Use any programming language or runtime

➤ Modernize existing applications to run serverless

➤ Powered by a rich ecosystem of event sources

➤ Manage serverless apps natively in Kubernetes

➤ Based on open source project, Knative

➤ Run anywhere OpenShift runs

GA in OpenShift 4.5

OPENSHIFT

OpenShift Serverless

SERVING EVENTING (4.6* GA)

Red Hat Enterprise Linux CoreOS

Physical Virtual Private cloud Public cloud

Applications Events

F

* 4.6 is the target, this could change!

OpenShift Serverless

54

Monitoring and
Automation

Integrations and
Ecosystem

Developer Experience

Powerful monitoring capabilities with

configuration and automation for

GitOps and modern CI/CD practices.

Eventing capabilities enabling a rich

ecosystem of Event Sources from

Red Hat and Partner products.

Intuitive developer experience

through the Developer Console and

CLI/IDE with Functions support.

Serverless Themes

CONFIDENTIAL designator

V0000000

OPENSHIFT SERVERLESS What's new in OpenShift 4.4

Serving kn service
kn service create
kn service delete
kn service describe
kn service list
kn service update

Configuration

Revision 1

Revision 2

Revision 3

Application
 (Knative Service)

RoutesDirects
traffic

Traffic splitting

kn revision
kn revision delete
kn revision describe
kn revision list

kn route
kn route describe
kn route list

● From container to URL within seconds

● Easier developer experience for Kubernetes

● Built-in versioning, traffic split and more

● Simplified Installation experience with Kourier

● Automatic TLS/SSL for Applications

Generally Available

new

new

$ kn service create --image=<container>

https://github.com/knative/client/blob/master/docs/cmd/kn_revision_delete.md
https://github.com/knative/client/blob/master/docs/cmd/kn_revision_describe.md
https://github.com/knative/client/blob/master/docs/cmd/kn_revision_list.md
https://github.com/knative/client/blob/master/docs/cmd/kn_revision_describe.md
https://github.com/knative/client/blob/master/docs/cmd/kn_revision_list.md

CONFIDENTIAL designator

V0000000

OPENSHIFT SERVERLESS

Infrastructure

Eventing

Configuration

Revision 1

Revision 2

Revision 3

Application
 (Knative Service)

RoutesDirects
traffic

Traffic splitting

Event Source

Event Providers

kn source
kn source create
kn source list
kn source list-types

Event

CONFIDENTIAL designator

V0000000

OPENSHIFT SERVERLESS What's new in OpenShift 4.4

Infrastructure

Eventing

Configuratio
n

Revision 1

Revision 2

Revision 3

Application
 (Knative Service)

RoutesDirects
traffic

Traffic splitting
Event Source

Event
Providers

kn source
kn source create
kn source list
kn source list-types

Broker

Subscription

Event

Trigger

kn trigger
Kn trigger create
kn trigger delete
kn trigger listkn broker

Kn broker create
kn broker delete
kn broker list

Technology Preview

Product Manager: William Markito

CONFIDENTIAL designator

V0000000

OPENSHIFT SERVERLESS

Event Source

kn source
kn source create
kn source list
kn source list-types

Broker

New
Event

Trigger

kn trigger
Kn trigger create
kn trigger delete
kn trigger list

kn broker
Kn broker create
kn broker delete
kn broker list

Provider

kn service
kn service create
kn service delete
kn service describe
kn service list
kn service update

Event Providers

Infrastructure

New Customer
created event

Email service

Log service

Loyalty points
service

Trigger

Trigger

New
Event

New
Event

Microservices choreography

59

Product Manager: William Markito

Event Sources in the Developer Console

60

Product Manager: William Markito

Container Source

Kafka

Sink Binding

61

Product Manager: William Markito

Developer Experience
Jaeger Support [2]

[1] https://docs.nvidia.com/datacenter/kubernetes/openshift-on-gpu-install-guide/index.html
[2] https://docs.openshift.com/container-platform/4.4/serverless/serverless-tracing.html

kn service create hello --image \ docker.io/knativesamples/hellocuda-go

--limit nvidia.com/gpu=1

GPU Support [1] for Serverless
Applications

https://docs.nvidia.com/datacenter/kubernetes/openshift-on-gpu-install-guide/index.html
https://docs.openshift.com/container-platform/4.4/serverless/serverless-tracing.html

Next Steps:
Your Technology Radar for Event-Driven and Serverless

● Service Mesh (Istio):
○ Provide microservice interconnectivity and visibility

● Serverless platforms (Knative)
○ Container build and on-demand scheduling

● Container-native frameworks (Quarkus)
○ Optimize Java workloads for serverless architecture

Next Steps:
Your Technology Radar for Event-Driven and Serverless

● Strimzi
○ Kafka operator for Kubernetes/OpenShift

● EnMasse
○ Messaging-as-a-Service for Kubernetes/OpenShift

● FaaS frameworks (e.g. Camel-K)
○ Schedule integration code directly on platform or via Knative

MESSAGING BACKBONE DISTRIBUTE, REACT ON DATA RULES EVALUATION
COMPLEX EVENTS
AUTOMATION

REACTIVE DEVELOPER
TOOLING

APP ENVIRONMENT
INFRASTRUCTURE
SERVERLESS / KNATIVE
OPERATOR HUB

REACTIVE / FAAS FRAMEWORKS

CAMEL K
REACTIVE INTEGRATION
SERVERLESS

Next Steps:
Red Hat’s Technology Radar for Event-Driven and Serverless

Next Steps: Resources
Knative Tutorial on Red Hat Developer
Knative Cookbook on Red Hat Developer
OpenShift Serverless Tech Topic
Red Hat Services Overview of Serverless Blog

https://redhat-developer-demos.github.io/knative-tutorial/knative-tutorial/index.html
https://developers.redhat.com/books/knative-cookbook?v=1
https://www.openshift.com/learn/topics/serverless
https://servicesblog.redhat.com/2020/03/17/introduction-to-openshift-serverless/

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you!

66

